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1 Introduction

We study the existence of entropy solutions for some variable exponent problems with exponents
p, q that may depend on the unknown solution u. We consider the case where the dependency of
p, q on u is a nonlocal quantity. Namely, we consider nonlocal Dirichlet boundary value problem
of the following form

−div(|∇u|p(b(u))−2∇u)− div(|∇u|q(b(u))−2∇u) = f in Ω

u = 0 on ∂Ω,

(1)

where Ω be a bounded domain of RN , N ≥ 2, f is a given data, p, q : R → [1, +∞) are a real
functions and b : W 1,α

0 (Ω)→ R.
By W 1,α

0 (Ω), we mean the Dirichlet-Sobolev space with constant exponent α satisfying 1 <

α < +∞ (that is, W 1,α
0 (Ω) denotes the closure of C∞0 (Ω) in W 1,α(Ω)). To underline the degree

of generality in defining exponents p, q, we recall two typical examples of maps b of the following
form:

b(u) = ‖∇u‖Lα(Ω), b(u) = ‖u‖Ls(Ω), s ≤ α∗,

namely, we may link b(·) to two norm definitions that are relevant from a mathematical point
of view. Here, α∗ denotes the critical Sobolev exponent of α.

In recent years, the existence, uniqueness, and regularity of solutions to the (p(x), q(x))-
Laplacian problem have been studied in many works (Xiang et al. (2020); Yanru (2021); Zhang
et al. (2019)). The situation where the variable exponents p, q depend on the unknown solution u
is non-standard as in the classical case (see Abbassi et al. (2019, 2021); Akdim et al. (2019)). This
kind of problems appear in the applications of some numerical techniques for the total variation
image restoration method that have been used in some restoration problems of mathematical
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image processing and computer vision Blomgren et al. (1997); Bollt et al. (2007); Türola (2017).
Türola (2017) have presented several numerical examples suggesting that the consideration of
exponents p = p(u) preserves the edges and reduces the noise of the restored images u. A
numerical example suggesting a reduction of noise in the restored images u when the exponent of
the regularization term is p = p(|∇u|) is presented in Blomgren et al. (1997). Chipot et al. (2019)
have proved the existence of weak solutions for some p(u)-Laplacian problems, the existence
proofs of Chipot et al. (2019) are based on the Schauder fixed-point theorem. Andreianov et al.
(2010), have studied the following prototype problem

−div(|∇u|p(u)−2∇u) + u = f in Ω,

u = 0 on ∂Ω.

Zhang et al. (2021) have proved the existence of entropy solutions for some nonlocal p-Laplacian
type problems and they have provided some positive answers for the two questions proposed by
Chipot and de Oliveira in Chipot et al. (2019). Ouaro et al. (2020) considered the following
nonlinear Fourier boundary value problem{

b(u)− div a(x, u,∇u) = f in Ω
a(x, u,∇u) · η + λu = g on ∂Ω.

The existence and uniqueness results of entropy solutions are established by an approximation
method and convergent sequences in terms of Young measure. Yanru (2021) have obtained the
existence of weak solutions of the (p(u), q(u))-Laplacian problem (1), where (p(u), q(u)) is a local
quantity by means of singular perturbation technique and Schauder fixed point theorem.

The fact that in reality physical measurements of certain quantities are not made in a punc-
tual way but through a local averages is always the motivation to study non-local problems. The
main difficulty in the analysis of these p(u)-problems relies in the fact that their weak formula-
tions cannot be written as equalities in terms of duality in fixed Banach spaces. The sequences
of solutions un to these problems correspond to different exponents pn and therefore belong to
possible distinct Sobolev spaces.

This paper is organized us follow. In Sec. 2 we introduce the basic assumptions and we
recall some definitions, basic properties of generalised Sobolev spaces that we will used later.
The Sec. 3 is devoted to show the existence of entropy solutions to the local problem (1).

2 Preliminaries

In this section we introduce our notation and collect some useful materials. We focus on the
setting of Lebesgue and Sobolev spaces with variable exponents, but we also link these spaces
to their counterparts with constant exponents.

Let Ω be a bounded domain of RN with ∂Ω Lipschitz-continuous, we say that a real-valued
continuous function p(·) is log-Hölder continuous in Ω if

∃C > 0 : |p(x)− p(y)| ≤ C

ln
(

1
|x−y|

) ∀x, y ∈ Ω, |x− y| < 1

2
. (2)

For any Lebesgue-measurable function p : Ω→ [1, ∞), we define

p− := ess inf
x∈Ω

p(x) , p+ := ess sup
x∈Ω

p(x), (3)

and we introduce the variable exponent Lebesgue space by:

Lp(·)(Ω) = { u : Ω→ R / ρp(·)(u) :=

∫
Ω
|u(x)|p(x)dx <∞}. (4)
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Equipped with the Luxembourg norm

‖u‖p(·) := inf
{
λ > 0 : ρp(·)

(u
λ

)
≤ 1
}
, (5)

Lp(·)(Ω) becomes a Banach space. If

1 < p− ≤ p+ <∞, (6)

Lp(·)(Ω) is separable and reflexive. The dual space of Lp(·)(Ω) is Lp
′(·)(Ω), where p′(x) is the

generalised Hölder conjugate of p(x),

1

p(x)
+

1

p′(x)
= 1.

The next proposition shows that there is a gap between the modular and the norm in Lp(·)(Ω).

Proposition 1. If (6) holds, for u ∈ Lp(x)(Ω), then the following assertions hold

min
{
‖u‖p−p(·), ‖u‖

p+
p(·)

}
≤ ρp(·)(u) ≤ max

{
‖u‖p−p(·), ‖u‖

p+
p(·)

}
,

min

{
ρp(·)(u)

1
p− , ρp(·)(u)

1
p+

}
<‖u‖p(·)<max

{
ρp(·)(u)

1
p− , ρp(·)(u)

1
p+

}
, (7)

‖u‖p−p(·) − 1 ≤ ρp(·)(u) ≤ ‖u‖p+p(·) + 1. (8)

Proposition 2. (Generalised Hölder’s inequality)
- For any functions u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have:∫

Ω
uvdx ≤ (

1

p−
+

1

p′−
)‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·).

- For all p satisfying to (6), we have the following continuous embedding,

Lp(·)(Ω) ↪→ Lr(·)(Ω) whenever p(x) ≥ r(x) for a.e. x ∈ Ω. (9)

In generalised Lebesgue spaces, there holds a version of Young’s inequality,

|uv| ≤ δ |u|
p(x)

p(x)
+ C(δ)

|v|p′(x)

p(x)
,

for some positive constant C(δ) and any δ > 0.
We define also the generalized Sobolev space by

W 1,p(·)(Ω) := {u ∈ Lp(·)(Ω) : ∇u ∈ Lp(·)(Ω)},

which is a Banach space with the norm

‖u‖1,p(·) := ‖u‖p(·) + ‖∇u‖p(·). (10)

The space W 1,p(·)(Ω) is separable and is reflexive when (6) is satisfied. We also have

W 1,p(·)(Ω) ↪→W 1,r(·)(Ω) whenever p(x) ≥ r(x) for a.e. x ∈ Ω. (11)

Now, we introduce the following function space

W
1,p(·)
0 (Ω) := {u ∈W1,1

0 (Ω) : ∇u ∈ Lp(·)(Ω)},
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endowed with the following norm

‖u‖
W

1,p(·)
0 (Ω)

:= ‖u‖1 + ‖∇u‖p(·). (12)

If p ∈ C(Ω), then the norm in W
1,p(·)
0 (Ω) is equivalent to ‖∇u‖p(·). When p is log-Hölder

continuous, then C∞0 (Ω) is dense in W
1,p(.)
0 (Ω).

If p is a measurable function in Ω satisfying 1 ≤ p− ≤ p+ < N and the Log-Hölder continuity
property (2), then

‖u‖p∗(·) ≤ C‖∇u‖p(·) ∀u ∈W 1,p(·)
0 (Ω),

for some positive constant C, where

p∗(x) :=

{
Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N.

On the other hand, if p satisfies (2) and p− > N , then

‖u‖∞ ≤ C‖∇u‖p(·) ∀u ∈W 1,p(·)
0 (Ω) ,

where C is another positive constant.
Since the problem (1) is considered with integrable data, then it is reasonable to work with
entropy solutions or renormalized solutions, which need less regularity than the usual weak
solutions. We introduce the following definition of the truncation function Tk at height k > 0 :

Tk(r) = min{k,max{r,−k}} =


k if r > k
r if |r| < k,
−k if r 6 −k.

Next we define the very weak gradient of a measurable function u with Tk(u) ∈W 1,p(b(u))
0 (Ω). The

proof follows from Lemma 2.1 of Benilan et al. (1995) due to the fact that W
1,p(·)
0 (Ω) ⊂W 1,α

0 (Ω).

Proposition 3. For every measurable function u with Tk(u) ∈ W
1,p(b(u))
0 (Ω), there exists a

unique measurable function v : Ω → RN , which we call the very weak gradient of u and denote
v = ∇u, such that

∇Tk(u) = vχ{|u|<k} for a.e. x ∈ Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E.
Moreover, if u belongs to W 1,1

0 (Ω), then v coincides with the weak gradient of u.

Lemma 1. Chipot et al. (2019) Assume that

1 < α ≤ qn(x) ≤ β <∞ ∀n ∈ N,

for a.e. x ∈ Ω, for some constants α and β, (13)

qn → q a.e. in Ω, as n→∞, (14)

∇un → ∇u in L1(Ω)d, as n→∞, (15)

‖|∇un|qn(x)‖1 ≤ C, for some positive constant C not depending on n. (16)

Then ∇u ∈ Lq(·)(Ω)d and

lim
n→

inf
∞

∫
Ω
|∇un|qn(x)dx ≥

∫
Ω
|∇u|q(x)dx. (17)
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3 Main results

In this section we formulate and prove the main result of the paper.
Define the set

W
1,p(b(u))
0 (Ω) :=

{
u ∈W 1,1

0 (Ω) :

∫
Ω
|∇u|p(b(u))dx <∞

}
.

If 1 < p(b(u)) < +∞ for all u ∈ R, this set is a Banach space for norm ‖u‖
W

1,p(·)
0 (Ω)

, which is

equivalent to ‖∇u‖Lp(b(u))(Ω) in the case of p(b(u)) ∈ C(Ω̄). If, for some constant α, p ≥ α > 1, p

and b are continuous, then W
1,p(b(u))
0 (Ω) is a closed subspace of W 1,α

0 (Ω) then, it is separable

and reflexive. In what follows, W−1,α′(Ω) = W 1,α
0 (Ω)∗, with 1 < α < +∞, denotes as usual the

dual space of W 1,α
0 (Ω). In the same way we define W

1,q(b(u))
0 (Ω).

Before we prove the existence theorem we place some restrictions to the exponents and assume
that p(·) and q(·) are real functions satisfying the following:

p, q are continuous and 1 < α ≤ q < p ≤ β <∞, (18)

for some constants α and β. With respect to constant α, we define domain W 1,α
0 (Ω) of the real

map b(·), and additionally we impose the following:

b is continuous , b is bounded (19)

that is, b(·) sends bounded sets of W 1,α
0 (Ω) into bounded sets of R. Now, we give a definition of

entropy solutions for the elliptic problem (1).

Definition 1. A measurable function u with Tk(u) ∈ W
1,p(b(u))
0 (Ω) is said to be an entropy

solution for the problem (1), if∫
Ω
|∇u|p(b(u))−2∇u · ∇Tk(u− ϕ)dx+

∫
Ω
|∇u|q(b(u))−2∇u · ∇Tk(u− ϕ)dx 6

∫
Ω
fTk(u− ϕ)dx,

(20)

for all ϕ ∈ C1
0 (Ω) and for every k > 0.

It is technically useful to extend the above definition of entropy solution to more general
truncation functions than Tk. We introduce the class T of functions T ∈ C2(R) ∩ L∞(R) satis-
fying:

T (0) = 0 and T (−t) = −T (t), T ′(t) > 0, for any t ∈ R,
T ′(t) = 0 for any t large enough and T ′′(t) 6 0, t > 0.

Lemma 2. The entropy condition (20) is equivalent to the following statement that∫
Ω
|∇u|p(b(u))−2∇u · ∇T (u−ϕ)dx+

∫
Ω
|∇u|q(b(u))−2∇u · ∇T (u−ϕ)dx 6

∫
Ω
fT (u−ϕ)dx, (21)

for all ϕ ∈ C1
0 (Ω) and for every T ∈ T .

Remark 1. The proof of Lemma 2 is similar to Lemma 3.2 in Benilan et al. (1995) and we
will omit it here.

We remark that quantities p(b(u)) and q(b(u)) reduce to real numbers and not functions.
Consequently, we can treat variable exponent Sobolev spaces in Definition 1 as constant exponent
Sobolev spaces.

Theorem 1. Assume that (18) and (19) hold together with f ∈ L1(Ω). Then there exists at
least one entropy solution of the problem (1) in the sense of the Definition 1.
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The proof of Theorem (1) is divided into into several steps.
Step 1: The approximate problem.
We consider the following approximate problem of the problem (1)

(Pn)


−div(|∇un|p(b(un))−2∇un)− div(|∇un|q(b(un))−2∇un) = fn in Ω

un = 0 on ∂Ω,

where fn is a sequence of C∞0 (Ω) functions strongly converging to f in L1 such that ‖fn‖L1 ≤
2‖f‖L1 .
By employing the arguments in Theorem 2.3.2 of Yanru (2021), we obtain the following result.
Then, based on this result, we could get the existence of approximate solutions to (1) with
f ∈ L1(Ω).

Theorem 2. Let Ω ⊂ RN , N > 2, be a bounded domain with Lipschitz boundary ∂Ω. Assume
that (18) hold together with

f ∈W−1,α′(Ω).

Then the problem (Pn) admits at least one weak solution un ∈W 1,p(un)
0 (Ω) in the following sense∫

Ω
|∇un|p(b(un))−2∇un · ∇ϕdx+

∫
Ω
|∇un|q(b(un))−2∇un · ∇ϕdx =

∫
Ω
fnϕdx, (22)

for all ϕ ∈W 1,p(un)
0 (Ω) ∩W 1,q(un)

0 (Ω).

Our aim is to prove that a subsequence of these approximate solutions {un} converges to a
measurable function u, which is an entropy solution to (1).
Step 2: a priori estimate.

Proposition 4. If u is an entropy solution to problem (1), then there exists a positive constant
C such that for all k > 1

meas{|u| > k} 6 C(A+ 1)α
∗/α

kα∗(1−1/α)
,

where α∗ is the Sobolev embedding exponent with respect to α.

Proof.
Choosing ϕ = 0 as a test function in (20), we obtain∫

Ω
|∇Tk(u)|p(b(u)) dx+

∫
Ω
|∇Tk(u)|q(b(u)) dx

=

∫
{|u|6k}

|∇u|p(b(u))dx+

∫
{|u|6k}

|∇u|q(b(u))dx 6 k‖f‖L1(Ω),

which implies that for all k > 1,

1

k

∫
Ω
|∇Tk(u)|p(b(u)) dx 6 A := ‖f‖L1(Ω), (23)

and
1

k

∫
Ω
|∇Tk(u)|q(b(u)) dx 6 A := ‖f‖L1(Ω).

Since

W
1,p(b(u))
0 (Ω) ↪→W 1,α

0 (Ω) ↪→ Lα
∗
(Ω).
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Then for every k > 1

‖Tk(u)‖Lα∗ (Ω) 6 C ‖∇Tk(u)‖Lp(b(u))(Ω)

6 C

(∫
Ω
|∇Tk(u)|p(b(u)) dx

)δ
6 C(Ak)δ,

where

δ =


1
α if ‖∇Tk(u)‖Lp(b(u))(Ω) > 1

1
β if ‖∇Tk(u)‖Lp(b(u))(Ω) 6 1.

Noting that {|u| > k} = {|Tk(u)| > k}, we have

meas{|u| > k} 6

(
‖Tk(u)‖Lα∗ (Ω)

k

)α∗
6

CAδα
∗

kα∗(1−δ)
6
C(A+ 1)α

∗/α

kα∗(1−1/α)
.

This completes the proof.
Step 3: The convergence in measure of {un}.
For every ε > 0 and every positive integer k, we have

meas {|un − um| > ε} ≤ meas {|un| > k}+meas {|um| > k}+meas {|Tk (un)− Tk (um)| > ε} .

Choosing Tk (un) as a test function in (22), we get∫
Ω
|∇Tk (un)|p(b(un)) dx+

∫
Ω
|∇Tk (un)|q(b(un)) dx 6 k ‖fn‖L1(Ω) 6 2k‖f‖L1(Ω). (24)

By Hölder’s inequality and (24), we have∫
Ω
|∇Tk (un)|α dx 6 C

(∫
Ω
|∇Tk (un)|p(b(un)) dx

) α
p(b(un))

6 C

(∫
Ω
|∇Tk (un)|p(b(un)) dx+ 1

)
6 C.

(25)

We deduce that {Tk (un)} is convergent in Lq(Ω) with q ∈ [1, α∗) . It follows from Proposition 4
that

lim sup
n,m→∞

meas {|un − um| > ε} 6 C
(
‖f‖L1(Ω)

)
k−α̃,

where α̃ = α∗(1− 1/α) > 0.
Because k is arbitrary, we prove that

lim sup
n,m→∞

meas {|un − um| > ε} = 0,

which implies the convergence in measure of {un}. Then there exists a subsequence (still denoted
by un) in Ω such that

un → u a.e in Ω. (26)

Step 4: The convergence almost everywhere in Ω of {∇un}.
We first prove that {∇un} is a Cauchy sequence in measure. Let δ > 0, and set

E1 := {x ∈ Ω : |∇un| > h} ∪ {x ∈ Ω : |∇um| > h} ,
E2 := {x ∈ Ω : |un − um| > 1}

and
E3 := {x ∈ Ω : |∇un| 6 h, |∇um| 6 h, |un − um| 6 1, |∇un −∇um| > δ} ,
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where h will be chosen later. Obviously we have

{x ∈ Ω : |∇un −∇um| > δ} ⊂ E1 ∪ E2 ∪ E3.

We may draw a subsequence still denoted by the original sequence such that

∇Tk (un)→ ηk in (Lα(Ω))N .

From (26), we deduce that ηk = ∇Tk(u) a.e. in Ω. Moreover, from Lemma 1 we know that

∇Tk(u) ∈
(
Lp(·)(Ω)

)N
and

lim inf
n→∞

∫
Ω
|∇Tk (un)|p(b(un)) dx >

∫
Ω
|∇Tk(u)|p(b(u)) dx.

For k > 0, we have

{x ∈ Ω : |∇un| > h} ⊂ {x ∈ Ω : |un| > k} ∪ {x ∈ Ω : |∇Tk (un)| > h} .

Thus, from (25) and Proposition 4, there exist constants C > 0 such that

meas {x ∈ Ω : |∇un| > h} 6 C

kα∗(1−1/α)
+
C

hα
.

By choosing k = Chα/(α
∗(1−1/α)), we deduce that

meas {x ∈ Ω : |∇un| > h} 6 C

hα
.

Let ε > 0. We may choose h = h(ε) large enough such that

meas (E1) 6
ε

3
, for all n,m > 0. (27)

On the other hand, since {un} is a Cauchy sequence in measure. Then there exists N1(ε) ∈ N
such that

meas (E2) 6
ε

3
, for all n,m > N1(ε). (28)

Notice that, for all q > 1 and for all ξ, ζ ∈ RN with |ξ|, |ζ| 6 h, |ξ − ζ| > δ, there exists a real
valued function m(h, δ) > 0 such that

(
|ξ|q−2ξ − |ζ|q−2ζ

)
· (ξ − ζ) > m(h, δ) > 0.

By taking T1 (un − um) as a test function in the approximation equation (22) and integrating
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on E3, we get

m(h, δ) meas (E3)

6
∫
E3

[
|∇un|p(b(un))−2∇un − |∇um|p(b(un))−2∇um

]
· (∇un −∇um) dx

+

∫
E3

[
|∇un|q(b(un))−2∇un − |∇um|q(b(un))−2∇um

]
· (∇un −∇um) dx

=

∫
E3

[
|∇um|p(b(um))−2∇um − |∇um|p(b(un))−2∇um

]
· (∇un −∇um) dx

+

∫
E3

[
|∇um|q(b(um))−2∇um − |∇um|q(b(un))−2∇um

]
· (∇un −∇um) dx

+

∫
E3

[fn − fm]T1 (un − um) dx

6
∫
E3

|∇um|η−1 | log |∇um|| · |∇un −∇um| · |p (b(um))− p (b(un))| dx

+

∫
E3

|∇um|ρ−1 | log |∇um|| · |∇un −∇um| · |q (b(um))− q (b(un))| dx

+ ‖fn − fm‖L1(Ω)

6 2hβ log h ·
∫

Ω
(|p (b(um))− p (b(un))|+ |q (b(um))− q (b(un))|) dx+ ‖fn − fm‖L1(Ω) := αn,m.

Here we used the facts that h� 1, relation (18), the definition of E3 and the mean value theorem
with η and ρ taking values between p (b(um)) and p (b(un)) and between q (b(um)) and q (b(un))
respectively, in the last two inequalities. By using the Lebesgue dominated convergence theorem
we obtain

meas (E3) 6
αn,m
m(h, δ)

6
ε

3
,

for all n,m > N2(ε, δ). Combining the estimates above we get

meas {x ∈ Ω : |∇un −∇um| > δ} 6 ε, for all n,m > max {N1, N2} ,

hence {∇un} is a Cauchy sequence in measure. Then we can choose a subsequence (denote it
by the original sequence) such that

∇un → v a.e. in Ω.

Thus, using Proposition 3 and the fact that ∇Tk (un) → ∇Tk(u) in (Lα(Ω))N , we deduce that
v coincides with the very weak gradient of u almost everywhere. Therefore, we have

∇un → ∇u a.e. in Ω. (29)

Step 5: Passing to the limit.
In order to prove (21) we take T ∈ T bounded by s0 > 0 such that T ′(s) = 0, for any s > s0.
Now we choose T (un − φ) as a test function in (22) for φ ∈ C1

0 (Ω). Then∫
Ω
|∇un|p(b(un))−2∇un · ∇T (un − φ) dx

+

∫
Ω
|∇un|q(b(un))−2∇un · ∇T (un − φ) dx =

∫
Ω
fnT (un − φ) dx.

(30)

For the first term in the left-hand side of (30), we have∫
Ω
|∇un|p(b(un))−2∇un · ∇T (un − φ) dx =

∫
Ω
|∇un|p(b(un)) T ′ (un − φ) dx

−
∫

Ω
|∇un|p(b(un))−2∇unT ′ (un − φ) · ∇φdx.

(31)
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From (26), (29) and Fatou’s Lemma, we deduce∫
Ω
|∇u|p(b(u))T ′(u− φ)dx 6 lim inf

n→∞

∫
Ω
|∇un|p(b(un)) T ′ (un − φ) dx. (32)

We now focus our attention on the second term in the right-hand side of (31).
We note that, if L = s0 + ‖φ‖L∞(Ω)∣∣∣|∇un|p(b(un))−2∇unT ′ (un − φ)

∣∣∣ 6 C |∇TL (un)|p(b(un))−1 .

Using (24), we have
{
|∇un|p(b(un))−2∇unT ′ (un − φ)

}
is bounded in

(
Lp
′(b(un))(Ω)

)N
⊂
(
Lβ
′
(Ω)
)N

.

Since un → u a.e. in Ω and ∇un → ∇u a.e. in Ω, we have

|∇un|p(b(un))−2∇unT ′ (un − φ)→ |∇u|p(b(u))−2∇uT ′(u− φ) a.e. in Ω,

which implies that

|∇un|p(b(un))−2∇unT ′ (un − φ) ⇀ |∇u|p(b(u))−2∇uT ′(u− φ) in
(
Lβ
′
(Ω)
)N

.

As φ ∈ C1
0 (Ω), we get∫

Ω
|∇un|p(b(un))−2∇unT ′ (un − φ) · ∇φdx

−→
∫

Ω
|∇u|p(b(u))−2∇uT ′(u− φ) · ∇φdx, as n→∞.

(33)

Combining (31), (32) and (33), we deduce∫
Ω
|∇u|p(b(u))−2∇u∇T (u− φ)dx 6 lim inf

n→∞

∫
Ω
|∇un|p(b(un))−2∇un∇T (un − φ) dx. (34)

In the same way we show that∫
Ω
|∇u|q(b(u))−2∇u∇T (u− φ)dx 6 lim inf

n→∞

∫
Ω
|∇un|q(b(un))−2∇un∇T (un − φ) dx. (35)

Now, we consider the right hand side of (30), since fn → f in L1(Ω) then

lim
n→∞

∫
Ω
fnT (un − φ) dx =

∫
Ω
fT (u− φ) dx. (36)

Using (30), (34), (35) and (36) we get∫
Ω
|∇u|p(b(u))−2∇u · ∇T (u− φ) dx+

∫
Ω
|∇u|q(b(u))−2∇u · ∇T (u− φ) dx

6
∫

Ω
fT (u− φ) dx,

(37)

for T ∈ T and φ ∈ C1
0 (Ω). Therefore, from Lemma 2 we complete the proof of the existence of

entropy solutions.
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